Asphalt concrete healing is one of the important concepts related to flexible pavement structures. Fatigue endurance limit (FEL) is defined as the strain limit under which no damage will be accumulated in the pavement and is directly related to asphalt healing. Pavement section designed to handle a strain value equivalent to the endurance limit (EL) strain will be considered as a perpetual pavement. All four-point bending beam fatigue testing results from the NCHRP 944-A project were extracted and utilized in the development of artificial neural network (ANN) EL strain predictive model based on mixture volumetric properties and loading conditions. ANN model architecture, as well as the prediction process of the EL strain utilizing the generated model, were presented and explained. Furthermore, a stand-alone equation that predicts the EL strain value was extracted from the developed ANN model utilizing the eclectic approach. Moreover, the EL strain value was predicted utilizing the new equation and compared with the EL strain value predicted by other prediction models available in literature. A total of 705 beam fatigue lab test data points were utilized in model training and evaluation at ratios of 70%, 15%, and 15% for training, testing, and validation, respectively. The developed model is capable of predicting the EL strain value as a function of binder grade, temperature, air void content, asphalt content, SR, failure cycles number, and rest period. The reliability of the developed stand-alone equation and the ANN model was presented by reasonable coefficient of determination (R2) value and significance value (F).