High energy cosmic rays hitting the earth atmosphere induce extensive air showers propagating downward with a high gamma factor. Determining the core location of such air shower is a necessary step to measure other important characteristics of a cosmic ray such as the lateral distribution function. In this study and based on computer simulations and radio signal analyses we investigate the relation between normalized radio signal phase angle emitted from particles in an air shower to the position of a shower core. We perform a series of simulations based on CORSIKA and COREAS code for cosmic rays with different types of primary particles with an energy range from 0.1 to 1 EeV. The results show a direct relationship between the average slope of normalized radio signal phase angle as a function of frequency to the absolute distance from extensive air shower core location. We have calculated the normalized radio signal phase angle to have the absolute minimum value at close distances to a shower core location. We discuss a possible approach to estimate core location with different types of virtual radio arrays.