The open volumetric receiver, one of the most important components of a Concentrated Solar Power (CSP) plant, is made up by a ceramic foam on which the concentrated solar radiation impinges. Ceramic foams are employed in volumetric solar receivers because of their high specific surfaces and their operating temperatures higher than those of metal foams. Thermo- fluid-dynamics in the graded ceramic foam of a volumetric solar air receiver for concentrated solar power is investigated numerically. Variable porosities and Pores Per Inch (PPI), according to different power laws, are accounted for. Governing equations are written with the Volume Averaging Technique (VAT) and are solved with the commercial software Comsol Multiphysics. The effects of different porosity and PPI laws, on the fluid velocity, pressure drop and temperatures, under different thermo-fluid-dynamic conditions, are highlighted.