This study presents a framework for integrating traffic simulation with high-resolution air pollution modeling to design adaptive traffic management policies aimed at reducing urban air pollution. Building on prior work that establishes the coupling of the MATSim traffic model with the PALM-4U urban climate model, this second part focuses on implementing a feedback loop to inform traffic management decisions based on simulated air pollution concentration levels. The research explores how traffic volumes and atmospheric conditions, such as boundary layer dynamics, influence air quality throughout the day. In an artificial case study of Berlin, a time-based toll is introduced, aimed at mitigating concentration peaks in the morning hours. The toll scheme is tested in two simulation scenarios and evaluated regarding the effectiveness of reducing air pollution levels, particularly NO2 during the morning hours. The case study results serve to illustrate the framework’s capabilities and highlight the potential of integrating traffic and environmental models for adaptive policy design. The presented approach provides a model for responsive urban traffic management, effectively aligning transportation policies with environmental goals to improve air quality in urban settings.
Read full abstract