In this study, computational fluid dynamics (CFD) was used to examine the efficiency of ventilation and airflow patterns in a multi-level layer hen house. The utilization of windcatchers as a natural ventilation system was the main area of focus. By comparing CFD simulations with experimental data using ANSYS Fluent, the results were validated. The findings showed good agreement in airflow velocity within the windcatchers and throughout the entire building between the CFD calculations and the experimental tests, resulting in uniform airflow distribution and the absence of turbulence in the area where the chickens were kept. This setup provided the layer hens with an acceptable level of comfort by maintaining a consistent and steady temperature profile. The windcatcher-based model demonstrated better temperature uniformity than mechanical window ventilation. The study also emphasized the importance of maintaining appropriate humidity levels throughout the building to ensure the comfort and productivity of layer hens. The advantages of the windcatcher-based system in terms of temperature distribution and airflow control were highlighted by comparison with an alternative ventilation model. These results underscore the importance of using natural ventilation systems, such as windcatchers, to create optimal ventilation conditions and provide layer hens with a comfortable and productive environment (resulting in a temperature reduction from 29°C to 19.85°C with a low and uniform air velocity ranging from 0 m/s to 0.7 m/s at cage level). Practical application An effective and eco-friendly approach to enhance animal health and productivity in poultry farms is to install a natural ventilation system with wind collectors. This setup creates optimal conditions for the animals by improving air quality, regulating temperature, and fine-tuning ventilation. Additionally, it promotes overall sustainability in poultry facilities by lowering energy costs and advocating for environmentally friendly management, aligning agricultural practices with stringent environmental standards.