In view of the growing shares of renewables in the electricity grid in combination with the electrification of hvac (heating, ventilation, air conditioning) systems in residential buildings, the grid intensity (in terms of carbon dioxide emissions per unit of electric energy) becomes increasingly sensitive to weather conditions, and synchronicity between weather and the grid becomes a more critical aspect in building performance assessment. Using building performance simulation techniques to seek robust building designs requires awareness about the uncertainties in circumstantial factors that affect performance. This 2016 – 2022 retrospective study highlights the effects of using low or high temporal resolution grid emissions intensity data on projected operation-induced carbon dioxide emissions for a terraced dwelling in the Netherlands. Building fabric quality, the occupant profile, and systems configurations (i.e., hvac and photovoltaics) are varied to investigate the effects of the applied grid model resolution. This study shows that ignoring high-resolution grid intensity data is getting increasingly problematic; applying low resolution (annual) instead of high-resolution (15-minute) grid intensity data leads to an increasingly unjustified optimistic assessment both for net and gross emissions (either or not allowing for carbon displacement by feeding locally generated electricity into the grid).
Read full abstract