(Orgeig and Daniels) This surfactant symposium reflects the integrative and multidisciplinary aims of the 1st ICRB, by encompassing in vitro and in vivo research, studies of vertebrates and invertebrates, and research across multiple disciplines. We explore the physical and structural challenges that face gas exchange surfaces in vertebrates and insects, by focusing on the role of the surfactant system. Pulmonary surfactant is a complex mixture of lipids and proteins that lines the air-liquid interface of the lungs of all air-breathing vertebrates, where it functions to vary surface tension with changing lung volume. We begin with a discussion of the extraordinary conservation of the blood-gas barrier among vertebrate respiratory organs, which has evolved to be extremely thin, thereby maximizing gas exchange, but simultaneously strong enough to withstand significant distension forces. The principal components of pulmonary surfactant are highly conserved, with a mixed phospholipid and neutral lipid interfacial film that is established, maintained and dynamically regulated by surfactant proteins (SP). A wide variation in the concentrations of individual components exists, however, and highlights lipidomic as well as proteomic adaptations to different physiological needs. As SP-B deficiency in mammals is lethal, oxidative stress to SP-B is detrimental to the biophysical function of pulmonary surfactant and SP-B is evolutionarily conserved across the vertebrates. It is likely that SP-B was essential for the evolutionary origin of pulmonary surfactant. We discuss three specific issues of the surfactant system to illustrate the diversity of function in animal respiratory structures. (1) Temperature: In vitro analyses of the behavior of different model surfactant films under dynamic conditions of surface tension and temperature suggest that, contrary to previous beliefs, the alveolar film may not have to be substantially enriched in the disaturated phospholipid, dipalmitoylphosphatidylcholine (DPPC), but that similar properties of rate of film formation can be achieved with more fluid films. Using an in vivo model of temperature change, a mammal that enters torpor, we show that film structure and function varies between surfactants isolated from torpid and active animals. (2) Spheres versus tubes: Surfactant is essential for lung stabilization in vertebrates, but its function is not restricted to the spherical alveolus. Instead, surfactant is also important in narrow tubular respiratory structures such as the terminal airways of mammals and the air capillaries of birds. (3). Insect tracheoles: We investigate the structure and function of the insect tracheal system and ask whether pulmonary surfactant also has a role in stabilizing these minute tubules. Our theoretical analysis suggests that a surfactant system may be required, in order to cope with surface tension during processes, such as molting, when the tracheae collapse and fill with water. Hence, despite observations by Wigglesworth in the 1930s of fluid-filled tracheoles, the challenge persists into the 21st century to determine whether this fluid is associated with a pulmonary-type surfactant system. Finally, we summarize the current status of the field and provide ideas for future research.
Read full abstract