Problems of the assessment of soil temperature regime at the polypedon level have yet to be solved. An approach suggested by the authors consists of three stages: (1) the characterization and prediction of the soil water regime as a factor influencing the soil temperature regime, (2) the obtaining of thermophysical functions for the particular elements of complex soilscapes, and (3) the calculation and assessment of the temperature regime of complex soilscapes in the form of the functional fields of soil temperature isopleths. This approach has been applied to predict the soil temperature regime of an arable field in the Vladimir opolie region. The complex soilscape of the field consists of medium loamy agrogray soils, agrogray soils with the second humus horizon, and podzolized agrogray soils. At the beginning of the growing season, minimum temperatures are observed in the areas of agrogray soils with the second humus horizon; the difference in soil temperatures at a depth of 20 cm reaches 1°C, and the difference in the sum of active soil temperatures reaches 20°C. Then, this difference changes considerably, so that the agrogray soils with the second humus horizon become warmer than the agrogray soils. In general, the functional field of soil temperatures within the complex soilscape is highly dynamic and diverse, which is specified by the variability in the water-physical and thermophysical properties of particular soils.
Read full abstract