The plant tumorigenic strain NCPPB 1650T isolated from Rosa×hybrida, and four nonpathogenic strains isolated from tumors on grapevine (strain 384), raspberry (strain 839) and blueberry (strains B20.3 and B25.3) were characterized by using polyphasic taxonomic methods. Based on 16S rRNA gene phylogeny, strains were clustered within the genus Agrobacterium. Furthermore, multilocus sequence analysis (MLSA) based on the partial sequences of atpD, recA and rpoB housekeeping genes indicated that five strains studied form a novel Agrobacterium species. Their closest relatives were Agrobacterium sp. R89-1, Agrobacterium rubi and Agrobacterium skierniewicense. Authenticity of the novel species was confirmed by average nucleotide identity (ANI) and in silico DNA–DNA hybridization (DDH) comparisons between strains NCPPB 1650T and B20.3, and their closest relatives, since obtained values were considerably below the proposed thresholds for the species delineation. Whole-genome-based phylogeny further supported distinctiveness of the novel species, that forms together with A. rubi, A. skierniewicense and Agrobacterium sp. R89-1 a well-delineated sub-clade of Agrobacterium spp. named “rubi”. As for other species of the genus Agrobacterium, the major fatty acid of the strains studied was 18:1 w7c (73.42–78.12%). The five strains studied were phenotypically distinguishable from other species of the genus Agrobacterium. Overall, polyphasic characterization showed that the five strains studied represent a novel species of the genus Agrobacterium, for which the name Agrobacterium rosae sp. nov. is proposed. The type strain of A. rosae is NCPPB 1650T (=DSM 30203T=LMG 230T=CFBP 4470T=IAM 13558T=JCM 20915T).
Read full abstract