In drainage of agricultural lands, the upward vertical recharge from a semi-confined aquifer depends on the difference of the piezometric heads on the two sides of the semi-impermeable layer through which this recharge takes place. This means that the recharge through the semi-impermeable base depends on the unknown height of the unsteady water table. In the nonhomogeneous Boussinesq equation, which describes the drainage problems, the downward uniform rate of the recharge from rain or irrigation and the recharge from the semiconfined aquifer are expressed by two terms. By solving the Boussinesq equation expressions for the nondimensional height of the water table and the nondimensional discharge of the drains per unit drained area are obtained for three different initial conditions. Some known solutions are shown as special cases of the present solutions. Variation of nondimensional water table heights at half distance of the drain spacing and the nondimensional discharge of the drains with nondimensional time have been graphically illustrated with the help of synthetic examples.