The contamination characteristics of Polycyclic Aromatic Hydrocarbons (PAHs) in different environmental functional areas are different. In this study, the contamination of PAHs in soils and common plants in typical mining and farmland areas in Xinjiang, China, was analyzed. The results showed that the contamination levels of PAHs in mining soils were significantly higher than those in farmland soils, and the mining soils were dominated by 4-5-ring PAHs and farmland soils by 3-4-ring PAHs. Analysis of their sources using a positive definite factor matrix model showed that PAHs in mining soils mainly originated from coal and natural gas combustion, and transportation processes; while farmland soils mainly came from biomass and coal combustion, and fossil fuel volatile spills. The cancer risk of PAHs in soils was evaluated using a combination of the Monte Carlo and the lifetime carcinogenic risk models, and the results showed that the overall level of cancer risk for mining soils was higher than that for farmland soils, and can put some people in high risk of cancer. For plant samples, except for individual crop samples, the contamination levels of mining plants and crops were similar, with 4-5-ring PAHs dominating in desert plants in mining areas and the highest proportion of 3-ring PAHs in crops in agricultural fields, and PAHs in both plants were mainly from biomass and coal combustion. The results of correlation analysis showed that 2-ring PAHs in crop roots were significantly positively correlated with it in corresponding soils, and some high-ring PAHs in crop leaves were significantly negatively correlated with it in corresponding soils. Therefore, there were significant differences in the pollution characteristics of PAHs in soils and common plants in mining and agricultural areas. Human health risks and ecological risks are mainly concentrated in mining areas, and appropriate intervention measures should be taken for pollution remediation.