Pesticides present a significant risk for both humans and the environment. However, quantitative data for a broad range of airborne pesticides in agricultural areas are missing. During or after the application, pesticides can reach the atmosphere and partition between the particulate and gaseous phase. As part of the EU project SPRINT, weekly ambient air samples were collected from two agricultural areas in Portugal (vineyard) and the Netherlands (potatoes, onions, and sugarbeet) between April 2021 and June 2022 using high-volume air samplers. The samples were analysed for 329 pesticides, of which 99 were detected. The most frequently detected compounds included the fungicides folpet, fenpropidin and mandipropamid, the insecticide chlorpyrifos-methyl, the herbicide terbuthylazine, and the metabolite prothioconazole-desthio, which were found with detection frequencies between 40 and 57 %. Pesticide concentrations ranged between 0.003 ng/m3 and 10 ng/m3. Remarkably, 97 % of the samples contained at least one pesticide and in 95 % of the samples, pesticide mixtures were present. The calculated particle phase fractions correlated with the octanol-air partitioning coefficient for most of the investigated compounds. Furthermore, calculated daily inhalation rates for individual pesticides and pesticide mixtures were far below the Acceptable Daily Intake (ADI) with a margin of exposure (MOE) of >1000 for the highest calculated daily inhalation rate for a child. However, as this value only includes pesticide intake from food and drinking water and considering that 91 % of the detected pesticides are associated with potential adverse human health effects. These findings highlight the broad range of airborne pesticides in agricultural areas and the need for quantitative data to include the intake of mixtures of highly hazardous pesticides by inhalation in human risk assessment.