Silver nanoparticles (Ag NPs) are widely used in biological, chemical, and physical fields due to their distinct properties. However, the effect of surfactants with different polarities on the catalytic and surface-enhanced Raman spectroscopy (SERS) performance of Ag NPs has not been thoroughly studied. Here, we tailor the surface charge of laser-synthesized Ag NP without changing their morphology and investigate their catalytic and SERS capabilities. The surfactant-free silver nanoparticles (NPBare), synthesized via pulsed laser ablation in liquid (PLAL), are subsequently coated with ionic surfactants sodium dodecyl sulfate (NPSDS) and cetyltrimethylammonium bromide (NPCTAB). The synthesis and morphology of Ag NPs are confirmed using UV-Vis absorption spectroscopy and scanning electron microscopy. The surface charge of fabricated NPs is determined using zeta potential (ZP) measurements. The ZP values of NPBare, NPSDS, and NPCTAB are determined to be -17 mV, 28.7 mV, and 5.58 mV, respectively. The catalytic activity of bare and coated Ag NPs was tested against the cationic and anionic dyes, Methylene blue (MB) and Methyl orange (MO) respectively. The reduction rate of both dyes was highest when using NPBare. However, in the case of coated nanoparticles, the rate of MB and MO reduction depends on the difference between the ZP of the dye and nanoparticles: the rate of reduction increases with the difference between the zeta potentials of the dye and coated nanoparticles increases. The SERS capability of bare and coated NPs was evaluated for anionic (MO) and cationic (MB, Rhodamine B, and Crystal Violet) dyes. The SERS intensity of dyes strongly enhanced with the increase in ZP difference between the dye molecules and NPs. Surface charge modified NPs shown excellent SERS sensitivity with detection limit up to nanomolar for dye molecules as well as the homogeneity of NPs demonstrated in Raman mapping results with relative standard deviation of 17%. The results suggest that the electrostatic interaction between the nanoparticles and dye molecules plays a dominant role in SERS enhancement. These findings highlight the significance of surface charge in improving the catalytic and sensing properties of noble metal nanoparticles.