The effective elastic properties of a polycrystalline material depend on the single crystal elastic constants of the crystallites comprising the polycrystal and on the manner in which the crystallites are arranged. In this paper we apply the techniques of homogenization to put the problem of determining effective elastic constants in a precise mathematical framework that permits us to derive an expression for the effective elasticity tensor. We also study how the homogenized elasticity tensor changes as the probability characterizing the ensemble changes. Under the assumption that the field of orientations of the crystallographic axes of the crystallites is an independent random field, we show that our theory is compatible with the formulation used in texture analysis. In particular, we are able to prove that the physical assumption made by [10] in his study of weakly-textured polycrystals holds true. In addition, we establish some elementary bounds on the material constants that characterize the effective elasticity tensor of weakly-textured orthorhombic aggregates of cubic crystallites.