ABSTRACT Soil organic matter is one of the most important indicators of the quality and sustainability of native and cultivated ecosystems, as it influences the chemical and physical properties of the soil, such as cation exchange capacity, aggregation, water retention, and supply of nutrients to plants. This study evaluated the physical properties and distribution of organic carbon in soil aggregates under different management practices. Disturbed and undisturbed soil samples were collected in the 0.0-0.1 m, 0.1-0.2 m, and 0.2-0.3 m layers under conservationist (rainfed and irrigated) and conventional (rainfed) management. The chemical properties and particle size, soil density, and organic carbon content in macro and microaggregates were assessed for the three management types. For conservationist management, in addition to these analyses, the weighted mean diameter, geometric mean diameter, aggregate stability index, and total soil porosity were determined. The data were analyzed using the Kruskal-Wallis test and the t-test, as there was no experimental design, and some of the data did not meet the normality test (Shapiro-Wilk). Soil density and total porosity did not differ for conservationist management (rainfed and irrigated). The irrigated conservationist management exhibited aggregates with larger weighted and geometric mean diameters and a higher aggregate stability index. Conservationist management (rainfed and irrigated) showed higher organic carbon contents in macro and microaggregates.
Read full abstract