Summary Some crude oils contain naturally occurring surfactants that avoid hydrate agglomeration. Natural hydrate antiagglomeration has been linked to different crude oil fractions, including asphaltenes. Asphaltenes can promote the formation of stable water-in-oil (W/O) emulsions due to their amphiphilic properties. The surfactant-like behavior of asphaltenes is related to their aggregation state. Asphaltenes are strong emulsifying agents when in an aggregated state but weak emulsifying agents when either precipitated or well solubilized in the bulk oil phase. The asphaltene aggregation state may be artificially modified, changing its interfacial activity, by mixing crude oil with heptane–toluene mixtures. This work investigated the influence of the asphaltene aggregation state on gas hydrate agglomeration. Results show that the natural hydrate antiagglomerant properties of crude oils can be highly dependent on the artificially induced asphaltene aggregation state. For instance, if asphaltenes were induced to be solubilized into the bulk oil phase, the natural hydrate antiagglomerant behavior was diminished. However, when asphaltene aggregation was induced, gas hydrate agglomeration was avoided. These new findings could have significant implications for the implementation of novel hydrate management strategies that can reduce or eliminate the need for external interventions and hence minimize capital and operational expenditures by taking advantage of the intrinsic natural antiagglomerant properties of some crude oils.
Read full abstract