Ticks represent important vectors of a number of bacterial and viral disease agents, owing to their hematophagous nature and their questing behavior (the process in which they seek new hosts). Questing activity is notably seasonal with spatiotemporal dynamics that needs to be understood in detail as part of mediating and mitigating tick-borne disease risk. Models of the geography of tick questing activity developed to date, however, have ignored the temporal dimensions of that behavior; more fundamentally, they have often not considered the sampling underlying available occurrence data. Here, we have addressed these shortfalls for Amblyomma americanum, the most commonly encountered tick in the central Great Plains, via (1) detailed, longitudinal sampling to characterize the spatiotemporal dimensions of tick questing activity; (2) randomization tests to establish in which environmental dimensions a species is manifesting selective use; and (3) modeling methods that include both presence data and absence data, taking fullest advantage of the information available in the data resource. The outcome was a detailed picture of geographic and temporal variation in suitability for the species through the two-year course of this study. Such models that take full advantage of available information will be crucial in understanding the risk of tick-borne disease into the future.