Flor yeast strains represent a specialized group of Saccharomyces cerevisiae yeasts used for the production of sherry-like wines by biological wine aging. We sequenced the genome of the industrial flor yeast strain I-329 from a collection of microorganisms for winemaking “Magarach” and the metagenomes of two flor velums based on this strain and continuously maintained for several decades. The winery uses two processes for the production of sherry-like wine: batch aging and a continuous process similar to the criaderas–solera system. The 18S rRNA gene profiling and sequencing of metagenomes of flor velums revealed the presence of the yeasts Pichia membranifaciens and Malassezia restricta in minor amounts along with the dominant S. cerevisiae I-329 flor yeast. Bacteria Oenococcus oeni and Lentilactobacillus hilgardii together accounted for approximately 20% of the velum microbiota in the case of a batch process, but less than 1% in the velum used in the continuous process. Collection strain I-329 was triploid for all chromosomes except diploid chromosomes I and III, while the copy numbers of all chromosomes were equal in industrial velums. A comparative analysis of the genome of strain I-329 maintained in the collection and metagenomes of industrial velums revealed only several dozens of single nucleotide polymorphisms, which indicates a long-term genetic stability of this flor yeast strain under the harsh conditions of biological wine aging.
Read full abstract