Safe and effective techniques for propofol total intravenous anesthesia (TIVA) in infants are not well imbedded into clinical practice, resulting in practitioner unfamiliarity and potential for over- and under-dosing. In this education article, we describe our approach to TIVA dosing in infants and toddlers (birth to 36months) which combines the use of pharmacokinetic models with EEG multi-parameter analysis. Pharmacokinetic models describe propofol and remifentanil effect site concentrations (Ce) over time in different age groups for a given dosing regimen. These models display substantial biological variability between individuals within age groups, impeding their application to clinical practice. Nevertheless, they reveal that younger infants require a higher propofol loading dose, a lower propofol maintenance dose, and a higher remifentanil dose compared with older infants. Proprietary EEG indices (eg, Bispectral Index) can serve as a biomarker of propofol Ce in adults and children to guide dosing to the individual patient; however, they are not recommended for infants as their validity remains uncertain this population. In our experience, EEG waveforms and processed parameters can reflect propofol Ce in infants, reflected by spectral edge frequency (SEF), density spectral array (DSA), and waveform patterns. In our practice, we use a "lookup table" of age-based dosing regimens or target-controlled infusion (TCI) based on the pharmacokinetic models to deliver a target propofol Ce and co-administer remifentanil and/or regional technique for analgesia. We analyze Electroencephalogram (EEG) waveforms, SEF, and DSA to adjust the propofol dose or TCI target concentration to the individual infant. EEG analysis mitigates against biological variability inherent in the pharmacokinetic models and has improved our experience with TIVA for infants.