Sensitive and selective methods for detecting Pd(II) and Pt(II) ions in water are crucial for environmental monitoring and remediation. Although traditional methods for detection of Pd(II) and Pt(II) ions are accurate and sensitive, they face substantial challenges due to high costs, reliance on specialised equipment and limited field applicability, thereby presenting notable limitations. In this study, we introduce a novel colourimetric sensing probe designed specifically to identify Pd(II) and Pt(II) ions in aqueous solutions. This probe utilises the enhanced chemical stability of Ag nanoprisms achieved through Pd or Pt deposition on their surfaces. Our approach features exceptionally low limits of detection of 2.6 nM for Pd(II) and 0.3 nM for Pt(II), indicating an impressive detection range. Furthermore, the probe’s ease of use, cost-effectiveness and compatibility with both naked eye and UV–Vis spectrophotometric detection make it a selective, reliable and affordable option for point-of-care analysis. Beyond its impressive sensitivity for ion detection, this methodology offers the additional benefit of enabling the on-demand synthesis of customised bimetallic catalysts. The synthesised Ag/Pd and Ag/Pt bimetallic nanoprisms demonstrate promising catalytic potential for environmental remediation. This advancement paves the way for efficient recycling and reuse of valuable Pd(II) and Pt(II) ions in various catalytic applications.
Read full abstract