West African cotton production has increased rapidly in recent years. Cotton is being cropped under new ecological conditions by new cotton-producing farmers, but the cropping techniques recommended by developers have essentially remained the same. Methodologies are needed to generate a broad scope of recommendations on cropping techniques to deal with the increasing diversity concerning farmers and cropping conditions. A conceptual model of a cotton field was developed that approaches a crop field as a biophysical system under the influence of a “technical system” (i.e. the combination of farmers’ practices implemented in the field). The system outputs were restricted to yield and the main yield components. A theoretical model was first designed on the basis of published data and expert knowledge on cotton physiology, local soil–climate conditions and farmers’ practices. It was based on five specific hypotheses on links between technical and biophysical systems. The hypotheses were tested in a local farmers’ network. Thirty “cropping situations” (soil–crop–technique combinations) were selected in farmers’ fields around Katogo village (Mali), a village that had been previously selected for a cotton crop management prototyping program. Homogeneous groups of situations were drawn up on the basis of the dynamics of crop aerial biomass accumulation. They were compared for their management and environment features. The initial conceptual model was then simplified, while taking the measured variability in its components and the sensitivity of the outputs to these components into account. This conceptual model is being evaluated in other villages, where we have partnerships with farmers, in order to develop a version adapted to a broad range of situations.
Read full abstract