Cabazitaxel, a novel tubulin inhibitor with poor affinity for P-glycoprotein, is a second-generation taxane holding great promise for the treatment of metastatic castration-resistant prostate cancer. However, its poor solubility and lack of target-ability limit its therapeutic applications. Herein, we develop a biodegradable, enzyme-responsive, and targeted polymeric micelle for cabazitaxel. The micelle is formed from two amphiphilic block copolymers. The first block copolymer consists of PEG, an enzyme-responsive peptide, and cholesterol; whereas the second block copolymer consists of a targeting ligand, PEG and cholesterol. The enzyme-responsive peptide is cleavable in the presence of matrixmetaloproteinase-2 (MMP-2), which is overexpressed in the tumor microenvironment of prostate cancer. The micelle showed a very low critical micelle concentration (CMC), high drug loading, and high entrapment efficiency. Release of cabazitaxel from the micelle is dependent on the cleavage of the enzyme-responsive peptide. Moreover, the micelle showed dramatically higher cellular uptake in prostate cancer cells compared to free cabazitaxel. Importantly, the ligand-coupled polymeric micelle demonstrated better inhibition of tumor growth in mice bearing prostate cancer xenografts compared to unmodified micelle and free cabazitaxel. Taken together, these findings suggest that the enzyme-responsive cabazitaxel micelle is a potent and promising drug delivery system for advanced prostate cancer therapy. Statement of SignificanceHerein, we develop a biodegradable, enzyme-responsive, and actively targeted polymer micelle for cabazitaxel, which is a novel tubulin inhibitor with poor affinity for P-glycoprotein. Despite cabazitaxel’s great promise for metastatic castration-resistant prostate cancer, its poor solubility, lack of target-ability, and high systemic toxicity limit its therapeutic applications, and therefore a targeted delivery system is highly needed for cabazitaxel. Our results demonstrate the importance of active targeting in targeted prostate cancer therapy. Encapsulating cabazitaxel in the micelle increases its activity and is expected to reduce its systemic toxicity, which is a major hurdle in its clinical applications. Moreover, the polymeric micelle may servers as a promising nanoscale platform for the targeted delivery of other chemotherapeutic agents to prostate cancer.
Read full abstract