The operator ∇ of F. Bergeron, Garsia, Haiman and Tesler [F. Bergeron, A. Garsia, M. Haiman, G. Tesler, Identities and positivity conjectures for some remarkable operators in the theory of symmetric functions, Methods Appl. Anal. 6 (1999) 363–420] acting on the k-Schur functions [L. Lapointe, A. Lascoux, J. Morse, Tableaux atoms and a new Macdonald positivity conjecture, Duke Math. J. 116 (2003) 103–146; L. Lapointe, J. Morse, Schur functions analogs for a filtration of the symmetric functions space, J. Combin. Theory Ser. A 101 (2003) 191–224; L. Lapointe, J. Morse, Tableaux on k + 1 -cores, reduced words for affine permutations and k-Schur expansion, J. Combin. Theory Ser. A 112 (2005) 44–81] indexed by a single column has a coefficient in the expansion which is an analogue of the ( q , t ) -Catalan number with a level k. When k divides n we conjecture a representation theoretical model in this case such that the graded dimensions of the module are the coefficients of the ( q , t ) -Catalan polynomials of level k. When the parameter t is set to 1, the Catalan numbers of level k are shown to count the number of Dyck paths that lie below a certain Dyck path with q counting the area of the path.
Read full abstract