Data–enabled predictive control (DeePC) for linear systems utilizes data matrices of recorded trajectories to directly predict new system trajectories, which is very appealing for real-life applications. In this paper we leverage the universal approximation properties of neural networks (NNs) to develop neural DeePC algorithms for nonlinear systems. Firstly, we point out that the outputs of the last hidden layer of a deep NN implicitly construct a basis in a so-called neural (feature) space, while the output linear layer performs affine interpolation in the neural space. As such, we can train of-line a deep NN using large data sets of trajectories to learn the neural basis and compute on-line a suitable affine interpolation using DeePC. Secondly, methods for guaranteeing consistency of neural DeePC and for reducing computational complexity are developed. Several neural DeePC formulations are illustrated on a nonlinear pendulum example.
Read full abstract