Abstract
This work is intended to provide a convenient tool for the mathematical analysis of a particular kind of finite volume approximation which can be used, for instance, in the context of nonlinear and/or anisotropic diffusion operators in 3D. Following the approach developed by F. Hermeline and by K.~Domelevo and P. Omnes in 2D, we consider a ``double'' covering $\Tau$ of a three-dimensional domain by a rather general primal mesh and by a well-chosen ``dual'' mesh. The associated discrete divergence operator $\div^{\ptTau}$ is obtained by the standard finite volume approach. A simple and consistent discrete gradient operator $\grad^\ptTau$ is defined by local affine interpolation that takes into account the geometry of the double mesh. Under mild geometrical constraints on the choice of the dual volumes, we show that $-\div^{\ptTau}$, $\grad^\ptTau$ are linked by the ``discrete duality property'', which is an analogue of the integration-by-parts formula. The primal mesh need not be conformal, and its interfaces can be general polygons. We give several numerical examples for anisotropic linear diffusion problems; good convergence properties are observed. The sequel [3] of this paper will summarize some key discrete functional analysis tools for DDFV schemes and give applications to proving convergence of DDFV schemes for several nonlinear degenerate parabolic PDEs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.