Neural differentiation requires a multifaceted program to alter gene expression along the proliferation to the differentiation axis. While critical changes occur at the level of transcription, post-transcriptional mechanisms allow fine-tuning of protein output. We investigated the role of tRNAs in regulating gene expression during neural differentiation in Drosophila larval brains. We quantified tRNA abundance in neural progenitor-biased and neuron-biased brains using the hydrotRNA-seq method. These tRNA data were combined with cell type-specific mRNA decay measurements and transcriptome profiles in order to model how tRNA abundance affects mRNA stability and translation efficiency. We found that (1) tRNA abundance is largely constant between neural progenitors and neurons but significant variation exists for 10 nuclear tRNA genes and 8 corresponding anticodon groups, (2) tRNA abundance correlates with codon-mediated mRNA decay in neuroblasts and neurons, but does not completely explain the different stabilizing or destabilizing effects of certain codons, and (3) changes in tRNA levels support a shift in translation optimization from a program supporting proliferation to a program supporting differentiation. These findings reveal coordination between tRNA expression and codon usage in transcripts that regulate neural development.
Read full abstract