The Fe-TaC coatings on stainless steel by electrospark granule deposition in an anode mixture of iron granules and tantalum carbide powder were first obtained. The material deposition rate on the substrate increased with the TaC powder concentration growth in the anode mixture, facilitating the initiation of electrical discharges. X-ray analysis of deposited coatings shows the presence of the TaC, γFe, and αFe phases. The tantalum carbide concentration grows with an increase in the content of TaC powder in the anode mixture, from 2.4 to 14.8 vol%. The dependence of the wear rate of coatings on the concentration of tantalum carbide in the anode mixture had a parabola form, with a minimum of 5 vol%. However, with a further increase in the TaC concentration in the anode mixture, the wear rate of the coatings monotonically increased due to spalling of TaC grains due to a deficiency of the metal binder.