The potential harms and benefits of e-cigarettes, or electronic nicotine delivery systems (ENDS), have received significant attention from public health and regulatory communities. Such products may provide a reduced risk means of nicotine delivery for combustible cigarette smokers while being inappropriately appealing to nicotine naive youth. Numerous authors have examined the chemical complexity of aerosols from various open- and closed-system ENDS. This body of literature is reviewed here, with the risks of ENDS aerosol exposure among users evaluated with a margin of exposure (MoE) approach for two non-carcinogens (methylglyoxal, butyraldehyde) and a cancer risk analysis for the carcinogen N-nitrosonornicotine (NNN). We identified 96 relevant papers, including 17, 13, and 5 reporting data for methylglyoxal, butyraldehyde, and NNN, respectively. Using low-end (minimum aerosol concentration, low ENDS use) and high-end (maximum aerosol concentration, high ENDS use) assumptions, estimated doses for methylglyoxal (1.78 × 10-3-135 μg/kg-bw/day) and butyraldehyde (1.9 × 10-4-66.54 μg/kg-bw/day) corresponded to MoEs of 227-17,200,000 and 271-280,000,000, respectively, using identified points of departure (PoDs). Doses of 9.90 × 10-6-1.99 × 10-4μg/kg-bw/day NNN corresponded to 1.4-28 surplus cancers per 100,000 ENDS users, relative to a NNN-attributable surplus of 7440 per 100,000 cigarette smokers. It was concluded that methylglyoxal and butyraldehyde in ENDS aerosols, while not innocuous, did not present a significant risk of irritant effects among ENDS users. The carcinogenic risks of NNN in ENDS aerosols were reduced, but not eliminated, relative to concentrations reported in combustible cigarette smoke.