This article is a brief review of the mechanism of action of fibrous filters and of the performance of respirators; it neglects many of the complications discussed in longer and more detailed articles. An expression is given for the pressure drop across a filter in terms of fibre diameter and filtration velocity. The particle capture mechanisms of interception and diffusional deposition are introduced and the way in which filtration efficiency varies with particle size is discussed. Filters with fibres of small diameter are shown to be the most efficient, but their use can cause problems. Electrically charged materials are widely used in respirators because of their high efficiency and low pressure drop. Types of material, their means of charging, and their method of action are described. An account is given of respirator leakage, the protection factor, and of the way that these may vary in a period of use. The leakage of air and particles through face seal leaks and leaky valves is discussed. The frequent discrepancy in the protection given by respirators in the workplace, on the one hand, and that suggested by laboratory measurements, on the other, is reviewed, and the article ends with an account of the combined effect of aerosol penetration through a filter and through a leak.