Sturgeons are chondrostean fish critically endangered due to anthropogenic loss and degradation of natural habitat and overfishing for meat and caviar production. Consequently, sturgeon aquaculture has extensively developed lately, being Russian sturgeon (Acipenser gueldenstaedtii) the second most important species reared for caviar production. However, Russian sturgeon aquaculture in subtropical countries, such as Uruguay, confronts difficulties because fish have to endure excessive summertime warm temperatures, which weaken their innate defences facilitating opportunistic infections. To address this problem, we look for identifying putative acute phase proteins (APPs), which might be robust serum biomarkers of both infection and chronic thermal stress, applied to monitoring Russian sturgeon health status in farms. We focused on the C-Reactive Protein/Serum Amyloid P (CRP/SAP) pentraxin since the pentraxin family includes well-known APPs, better characterised in mammals than fish. We identified A.gueldenstaedtii CRP/SAP (AgCRP/SAP), as a member of the universal CRP/SAP pentraxin sub-family, and studied AgCRP/SAP involvement in sturgeon response to bacterial challenge and chronic thermal stress, in comparison with A. gueldenstaedtii Serum Amyloid A (AgSAA), a previously described positive APP. Results showed that AgCRP/SAP is a constitutive serum component that remained constant upon Aeromonas hydrophila challenge and chronic thermal stress. Contrastingly, serum AgSAA was subjected to regulation by bacterial and thermal stress challenges, showing a 50-fold increase and 3-fold decline in serum levels, respectively. Overall, results highlight the potential value of AgSAA, but not of AgCRP/SAP, as a biomarker of bacterial infection and the need to continue searching for robust chronic thermal stress biomarkers in sturgeons.