AbstractPresent paper shows the different types of tensor product model based linear matrix inequality controller design and feasibility analysis of two degrees of freedom aeroelastic wing section model. The tensor product models are based on reducing or removing the nonlinear behavior of the system and weighting functions. The linear matrix inequality based method results globally asymptotically stable system. The goal of the paper is to examine that selecting and varying the transformation space influences the feasibility of the linear matrix inequality based controller. The paper gives a comparison between the different tensor product models in terms of controller performance. The linear matrix inequality gives feasible solution for the controller design if the transformation space is selected adequately.