Abstract

This paper presents an algorithm to compute the aerodynamic forces and moments of an aeroelastic wing undergoing large amplitude heave and pitch limit cycle oscillations. The technique is based on inverting the equations of motion to solve for the lift and moment experienced by the wing. Bayesian inferencing is used to estimate the structural parameters of the system and generate credible intervals on the lift and moment calculations. The inversion technique is applied to study the affect of mass coupling on limit cycle oscillation amplitude. Examining the force, power, and energy of the system, the reasons for amplitude growth with wind speed can be determined. The results demonstrate that the influence of mass coupling on the pitch–heave difference is the driving factor in amplitude variation. The pitch–heave phase difference not only controls how much aerodynamic energy is transferred into the system but also how the aerodynamic energy is distributed between the degrees of freedom.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call