A mathematical model for the prediction of the turbulent flow, diffusion combustion process, heat transfer including thermal radiation and pollutants formation inside combustion chambers is described. In order to validate the model the results are compared herein against experimental data available in the open literature. The model comprises differential transport equations governing the above-mentioned phenomena, resulting from the mathematical and physical modelling, which are solved by the control volume formulation technique. The results yielded by the two different turbulent-mixing physical models used for combustion, the simple chemical reacting system (SCRS) and the eddy break-up (EBU), are analysed so that the need to make recourse to local turbulent scales to evaluate the reactants' mixing rate is assessed. Predictions are performed for a gaseous-fuelled combustor fired with two different burners that induce different aerodynamic conditions inside the combustion chamber. One of the burners has a typical geometry of that used in gaseous fired boilers—fuel firing in the centre surrounded by concentric oxidant firing—while the other burner introduces the air into the combustor through two different swirling concentric streams. Generally, the results exhibit a good agreement with the experimental values. Also, NO predictions are performed by a prompt-NO formation model used as a post-processor together with a thermal-NO formation model, the results being generally in good agreement with the experimental values. The predictions revealed that the mixture between the reactants occurred very close to the burner and almost instantaneously, that is, immediately after the fuel-containing eddies came into contact with the oxidant-containing eddies. As a result, away from the burner, the SCRS model, that assumes an infinitely fast mixing rate, appeared to be as accurate as the EBU model for the present predictions. Closer to the burner, the EBU model, that establishes the reactants mixing rate as a function of the local turbulent scales, yielded slightly slower rates of mixture, the fuel and oxidant concentrations which are slightly higher than those obtained with the SCRS model. As a consequence, the NO concentration predictions with the EBU combustion model are generally higher than those obtained with the SCRS model. This is due to the existence of higher concentrations of fuel and oxygen closer to the burner when predictions were performed taking into account the local turbulent scales in the mixing process of the reactants. The SCRS, being faster and as accurate as the EBU model in the predictions of combustion properties appears to be more appropriate. However, should NO be a variable that is predicted, then the EBU model becomes more appropriate. This is due to the better results of oxygen concentration yielded by that model, since it solves a transport equation for the oxidant concentration, which plays a dominant role in the prompt-NO formation rate. Copyright © 2002 John Wiley & Sons, Ltd.