The initial microbial contamination of carcasses during slaughtering adversely affects spoilage and shelf life and is of global concern for food safety and meat quality. This study evaluated the hygiene and quality using the prevalence of foodborne pathogens and the level of indicator bacteria on 200 carcasses, collecting 10 from each of 20 cattle slaughterhouses in Korea. The distribution of aerobic bacterial count in carcasses was significantly highest at 2.0–3.0 log10 CFU/cm2 (34.1%), whereas the Escherichia coli count was significantly highest at under 1.0 log10 CFU/cm2 (94.0%) (P < 0.05). Clostridium perfringens was most prevalent (60.0% of slaughterhouses; 17.5% of carcasses), followed by Yersinia enterocolitica (30.0% of slaughterhouses; 6.5% of carcasses), Staphylococcus aureus (15.0% of slaughterhouses; 4.0% of carcasses), Listeria monocytogenes 1/2a (5.0% of slaughterhouses; 1.0% of carcasses), Salmonella enterica subsp. enterica serovar Infantis (5.0% of slaughterhouses; 1.0% of carcasses), and Shiga toxin-producing E. coli O:66 (5.0% of slaughterhouses; 0.5% of carcasses). Although 28 C. perfringens isolates from 11 slaughterhouses were divided into 21 pulsotypes, all isolates showed the same toxinotype as type A and only carried the cpa. Interestingly, 83.3% of isolates from two slaughterhouses located in the same province showed resistance to tetracycline. Furthermore, 13 Y. enterocolitica isolates from six slaughterhouses were divided into seven pulsotypes that were divided into biotypes 1A and 2 and serotypes O:5 and O:8, except for isolates that could not be typed. Twelve (92.3%) isolates only carried ystB, but one (7.7%) isolate carried ail and ystA. Moreover, 46.2% of Y. enterocolitica isolates showed multidrug resistance against ampicillin, cefoxitin, and amoxicillin/clavulanic acid. This study supports the need for continuous monitoring of slaughterhouses and hygiene management to improve the microbiological safety of carcasses.
Read full abstract