The transonic airflow around a supercritical wing with a shock wave is described via direct numerical simulations. Flow control for turbulent drag reduction is applied via streamwise traveling waves of spanwise velocity applied on a finite portion of the suction side. The near-field modifications caused by the forcing are studied via the analysis of the wake profile downstream of the trailing edge. Moreover, for the first time, the effects of spanwise forcing on aeroacoustic noise are considered to establish whether active flow control for drag reduction could possibly increase noise. By extracting the acoustic signals on a circumference placed in the near-field around the wing and by studying them in terms of sound intensity and frequency content, it is found that noise intensity is not significantly increased by spanwise forcing and that frequency content is only minimally altered. Furthermore, if the angle of attack is reduced to take into account the increased lift and the reduced drag made possible by the control action, changes in the noise characteristics become negligible.
Read full abstract