Per- and polyfluoroalkyl substances (PFAS) have been found at relatively elevated concentrations in landfill leachates. Some landfill facilities treat physical-chemical parameters of their leachates using on-site leachate treatment systems before discharge. The objective of this study was to evaluate whether changes in physical-chemical parameters of leachate at on-site treatment systems (including bulk measurements, oxygen demanding components, and metals) were associated with concentration changes in PFAS. Leachates were evaluated at 15 on-site treatment facilities which included pond systems, aeration tanks, powdered activated carbon (PAC), sand filtration, reverse osmosis (RO) and combination treatment processes. Results show that most physical-chemical parameters and PFAS were significantly reduced in RO systems (over 90 %). For pond systems, statistically significant correlations (rs > 0.6, p < 0.05) were observed between ∑26PFAS changes and the changes in pH, alkalinity, ammonia, and some metals. Significant correlations were also found between ∑8PFAAs precursors changes and specific conductivity (SPC), pH, alkalinity, ammonia, and metals changes. For aeration tank systems, significant correlations (rs > 0.6, p < 0.05) were observed between ∑26PFAS changes and changes in total dissolved solids and zinc, and between the changes of ∑8PFAAs precursors and field pH. These correlations are believed to be associated with rainfall dilution and precipitation of calcium carbonate and other metals as leachate is introduced to the atmosphere.