Some enlightenment regarding the project to mechanise reason. The assembly line of machine learning: data, algorithm, model. The training dataset: the social origins of machine intelligence. The history of AI as the automation of perception. The learning algorithm: compressing the world into a statistical model. All models are wrong, but some are useful. World to vector: the society of classification and prediction bots. Faults of a statistical instrument: the undetection of the new. Adversarial intelligence vs. statistical intelligence: labour in the age of AI.