Infrared image segmentation in marine environments is crucial for enhancing nighttime observations and ensuring maritime safety. While recent advancements in deep learning have significantly improved segmentation accuracy, challenges remain due to nighttime marine scenes including low contrast and noise backgrounds. This paper introduces a cross-granularity infrared image segmentation network CGSegNet designed to address these challenges specifically for infrared images. The proposed method designs a hybrid feature framework with cross-granularity to enhance segmentation performance in complex water surface scenarios. To suppress feature semantic disparity against different feature granularity, we propose an adaptive multi-scale fusion module (AMF) that combines local granularity extraction with global context granularity. Additionally, incorporating a handcrafted histogram of oriented gradients (HOG) features, we designed a novel HOG feature fusion module to improve edge detection accuracy under low-contrast conditions. Comprehensive experiments conducted on the public infrared segmentation dataset demonstrate that our method outperforms state-of-the-art techniques, achieving superior segmentation results compared to professional infrared image segmentation methods. The results highlight the potential of our approach in facilitating accurate infrared image segmentation for nighttime marine observation, with implications for maritime safety and environmental monitoring.
Read full abstract