Sensorineural hearing loss in mammals occurs due to irreversible damage to the sensory epithelia of the inner ear and has very limited treatment options. The ability to regenerate the auditory progenitor cells is a promising approach for the treatment of sensorineural hearing loss; therefore, finding an appropriate and easily accessible stem cell source for restoring the sense of hearing would be of great interest. Here, we proposed a novel easy-to-access source of cells with the ability to recover auditory progenitor cells. In this study, gingival mesenchymal stem cells (GMSCs) were utilized, as these cells have high self-renewal and multipotent differentiation capacity and can be obtained easily from the oral cavity or discarded tissue samples at dental clinics. To manipulate the biophysical properties of the cellular microenvironment for promoting GMSC differentiation toward the target cells, we also tried to propose a candidate biomaterial. GMSCs in combination with an appropriate scaffold material can, therefore, present advantageous therapeutic options for a number of conditions. Here, we report the potential of GMSCs to differentiate into auditory progenitor cells while supporting them with an optimized three-dimensional scaffold and certain growth factors. A hybrid hydrogel scaffold based on peptide modified alginate and Matrigel was used here in addition to the presence of fibroblast growth factor-basic (bFGF), insulin-like growth factor (IGF), and epidermal growth factor (EGF). Our in vitro and in vivo studies confirmed the auditory differentiation potential of GMSCs within the engineered microenvironment.