Although there has been a wealth of methods developed to produce nanoparticles (NPs), many still suffer from common limitations, such as the instability of the formed nanoparticles against self-aggregation and the inability to produce significant quantities of nanoparticles (gram level). In this regard, there is a growing need for the development of cost-effective, reliable, and scalable experimental protocols to synthesize stable nanoparticles with desired morphologies and controlled sizes. Hence, in this work, the authors explore the synthesis of copper oxide (CuO) nanoparticles via the construction of a multifunctional flow reactor that uses both polymer-templating and chemical reduction methods to produce nanoparticles at the gram scale. In particular, this flow reactor takes advantage of dendrimers and other polymers, such as polyethyleneimine, to control the size and morphology of the CuO NPs.
Read full abstract