With the advancement of space exploration and optical communication toward deep space, the high-precision evaluation and image stabilization of space optical payloads under micro-vibration have become increasingly critical. To address these challenges and ensure sub-micro-radian pointing accuracy for high-precision space optical payloads (HPSOPs), this paper proposes a high-precision micro-vibration testing scheme and a two-stage image stabilization system. The micro-vibration testing scheme is based on an automated quasi-zero stiffness suspension device (AQZSSD), which enhances testing sensitivity and environmental disturbance resistance, ensuring the accuracy of the results. The two-stage image stabilization system integrates three bipod vibration isolation legs (BVILs) and a decoupled fast steering mirror (FSM), extending control bandwidth and achieving comprehensive vibration suppression. Micro-vibration testing and image stabilization experiments were conducted under disturbances from multiple vibration sources. Experimental results demonstrate that the AQZSSD introduces disturbances below 0.4 Hz, confirming its quasi-zero stiffness characteristics in alignment with theoretical predictions. Furthermore, the line-of-sight (LOS) jitter root mean square (RMS) value is reduced from 1.253 μrad to 0.276 μrad, achieving sub-micro-radian stability. Additionally, due to the coupling effect of the micro-vibration response, the collaborative testing results were found to be lower than the linear superposition of individual sources. This work offers critical theoretical and technical support for the development of HPSOPs, with potential applications in future space missions and advanced optical technologies.
Read full abstract