This study successfully optimized two advanced extraction methods, microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE), for the efficient and rapid recovery of quinine from Cinchona officinalis. Among the evaluated parts of the plant, the bark consistently yielded the highest quinine concentration, highlighting its significance as the primary source for alkaloid extraction. The optimized conditions for MAE (65% ethanol, 130 °C, 34 min) achieved a maximum yield of 3.93 ± 0.11 mg/g, while UAE (61% ethanol, 25 °C, 15 min) provided a faster but slightly lower yield of 2.81 ± 0.04 mg/g. These findings confirm the superiority of MAE and UAE over conventional methods like Soxhlet extraction in terms of time efficiency and sustainability. The quantification of quinine using high-performance liquid chromatography (HPLC) coupled with advanced detection methods further validated the reliability and reproducibility of the results. While this study focused on optimizing extraction and quantification parameters, it sets the groundwork for future research into the sustainable utilization and potential valorization of C. officinalis byproducts. These findings not only provide a standardized protocol for extracting quinine but also contribute to the broader application of green chemistry principles in pharmaceutical production.
Read full abstract