Increased Greenhouse Gas (GHG) emissions from both natural and man-made systems contribute to climate change. In addition to reducing the use of crude petroleum’s derived fuels, and increasing tree-planting efforts and sustainable practices, air pollution can be minimized through phytoremediation. Bio-fuel from crops grown on marginal land can sustainably address climate change, global warming, and geopolitical issues. There are numerous methods for producing renewable energy from both organic and inorganic environmental resources (sunlight, air, water, tides, waves, and convective energy), and numerous technologies for doing the same with biomass with different properties and derived from different sources (food industry, agriculture, forestry). However, the production of bio-fuels is challenging and contentious in many parts of the world since it competes for soil with the growth of crops and may be harmful to the environment. Therefore, it is necessary to use wildlife management techniques to provide sustainable bio-energy while maintaining or even improving essential ecosystem processes. The second generation of bio-fuels is viewed as a solution to the serious issue. Agricultural lignocellulosic waste is the primary source of second-generation bio-fuel, possibly the bio-fuel of the future. Sustainable practices to grow biomass, followed by their holistic conversion into ethanol with desired yield and productivity, are the key concerns for employing renewable energy mix successfully. In this paper, we analyze the various types of bio-fuels, their sources, and their production and impact on sustainability.