Several firefly luciferases eliciting light emission in the yellow-green range of the spectrum and with distinct kinetic properties have been already cloned, sequenced, and characterized. Some of them are currently being applied as analytical reagents and reporter genes for bioimaging and biosensors, and more recently as potential color tuning indicators of intracellular pH and toxic metals. They were cloned from the subfamilies Lampyrinae (Photinini: Photinus pyralis, Macrolampis sp2; Cratomorphini: Cratomorphus distinctus), Photurinae (Photuris pennsylvanica), Luciolinae (Luciola cruciata, L. lateralis, L. mingrelica, L. italica, Hotaria parvula), and Amydetinae (Amydetes vivianii) occurring in different parts of the world. The largest number has been cloned from fireflies occurring in Brazilian biomes. Taking advantage of the large biodiversity of fireflies occurring in the Brazilian Atlantic rainforest, here we report the cloning and characterization of a novel luciferase cDNA from the Photurinae subfamily, Bicellonycha lividipennis, which is a very common firefly in marshlands in Brazil. As expected, multialignements and phylogenetic analysis show that this luciferase clusters with Photuris pennsylvanica adult isozyme, and with other adult lantern firefly luciferases, in reasonable agreement with traditional phylogenetic analysis. The luciferase elicits light emission in the yellow-green region, has kinetics properties similar to other adult lantern firefly luciferases, including pH- and metal sensitivities, but displays a lower sensitivity to nickel, which is suggested to be caused by the natural substitution of H310Y.