Myosin heavy chain (MyHC), one of the major components in the contractile machinery of skeletal muscle fibers, is found in several isoforms during myogenesis. During chicken development, embryonic, neonatal, and adult MyHC isoforms are expressed. Broiler chickens have been selected for fast and large muscle growth, whereas Single Comb White Leghorn (SCWL) chickens have been selected for egg laying capabilities. This has led to an obvious difference in muscle growth and development with broilers being much larger than SCWL. The objective of this study was to determine if differences in muscle growth and development of SCWL and broilers are associated with differences in temporal expression of MyHC isoforms in skeletal muscle between the 2 breeds. Pectoralis major muscle (PM) was collected from SCWL and broilers at embryonic d 15, 17, and 19 and 1, 5, 11, 20, 27, and 33 d posthatch with n = 3 samples per time point and breed. Western blotting using 3 monoclonal antibodies (EB165, 2E9, and AB8) was performed to compare the expression patterns of embryonic/adult, neonatal, and adult isoforms of MyHC, respectively, for all time points in both SCWL and broiler chickens. Both broiler and SCWL chickens began expressing the neonatal MyHC isoform on d 5; however, SCWL chickens expressed the neonatal isoform much longer than broilers. The SCWL chickens had sustained expression of the neonatal MyHC isoform through d 27, whereas in broiler chickens the neonatal isoform was not expressed at d 20. Pectoralis major tissue from broiler chickens expressed the adult MyHC isoform as early as d 20, whereas the SCWL chickens began expressing the adult isoform later. The rate of transition to neonatal and adult MyHC isoforms in broilers and Leghorns is consistent with the faster maturation and growth of broilers relative to Leghorns. This relationship between faster growth of the PM and the rate of transition of MyHC isoforms within the fast skeletal muscle of the PM may indicate a selection marker for improvement of broiler PM growth.
Read full abstract