Using dynamic LEED measurements of spot intensities and profiles, together with thermal desorption data, we have investigated the oxidation of CO on Pt(100)−(1 × 1). At T = 355 K, either CO or O was preadsorbed and reacted off with the other species. Results from both titration sequences point to the following conclusions: Titration of preadsorbed oxygen with CO g leads to rapid reaction, with a reaction probability of unity for each chemisorbed CO. Adsorbed CO does not accumulate on the surface until θ o ⩽ 0.05, i.e. an intermediate, rather clean (1 × 1) Pt surface is obtained. Further evidence for this clean intermediate is provided by the fact that characteristics of the diffraction spots of the c(2 × 2) of CO develop identically during this reaction sequence and during adsorption of CO on a clean (1 × 1) Pt surface. In the reverse case, titration of preadsorbed CO with O 2,g, the reaction rate is slower than the oxygen adsorption rate, leading to a pressure-dependent development of coexisting O ad and CO ad domains, which we observe directly with LEED. The stable phases coexisting are the c(2 × 2) of CO and the oxygen-related (3 × 1). Thermal desorption peak shapes, together with LEED observations, indicate that the CO in this case is held in c(2 × 2) islands by a matrix of surrounding oxygen atoms. In no case do mixed structures form, nor is an existing structure compressed by subsequent adsorption of the second species. Starting from a Langmuir-Hinshelwood mechanism, the differences between the two reaction sequences are discussed in terms of different activation barriers for reaction and different sticking coefficients of the adsorbing species. Special attention is given to the mobilities of the adsorbed reactants.
Read full abstract