Microplastics are omnipresent in aquatic environments and can act as vectors to carry other pollutants, modifying their pathway through the systems. In this study, the differences in the adsorption capacity and mechanism for Cr(VI) sorption with polyethylene (PE, a conventional microplastic) and polylactic acid (PLA, a biodegradable microplastic) were investigated via characterization of the MPs, the determination of kinetic behavior (pseudo-first- and second-order model, the Elovich model), and the degree of fit to Langmuir and Freundlich isothermal models; the adsorption behavior was also studied under different solution conditions. The results indicated that when the dose of MPs was 1 g/L, the adsorption capacity of Cr(VI) on MPs reached the highest value, the adsorption capacities were PLA(0.415 mg/g) > PE(0.345 mg/g). The adsorption of Cr(VI) on PE followed the Langmuir isotherm model, while PLA had a stronger fit with the Freundlich model. Sorption in both cases followed a pseudo-first-order kinetics model. The maximum adsorption capacity of Cr(VI) on PLA (0.54 mg/g) is higher than that on PE (0.38 mg/g). In addition, PLA could reach adsorption equilibrium in about 8 h and can adsorb 72.3% of the total Cr(VI) within 4 h, while PE required 16 h to reach equilibrium, suggesting that PLA adsorbs at a significantly faster rate than PE. Thus, biodegradable MPs like PLA may serve as a superior carrier for Cr(VI) in aquatic environments. When the pH increased from 2 to 6, the adsorption of Cr(VI) by PE and PLA decreased from 0.49 mg/g and 0.52 mg/g to 0.27 mg/g and 0.26 mg/g, respectively. When the concentration of sodium dodecyl sulfate in the Cr(VI) solution was increased from nil to 300 mg/L, the adsorption of Cr(VI) by PE and PLA increased by 3.66 and 3.05 times, respectively. In addition, a higher temperature and the presence of Cu2+ and photoaging promoted the adsorption of Cr(VI) by MPs, while higher salinity inhibited the adsorption. The desorption efficiencies of Cr(VI) on MPs were PLA(57.8%) > PE(46.4%). The characterization results further confirmed that the adsorption mechanism could be attributed to electrostatic attraction, hydrogen bonding, and surface complexation. In sum, PLA could potentially serve as better vectors for Cr(VI) than PE, but the risk associated with PLA might be higher than that with PE.