This study focuses on the development of macroporous monoliths using cryopolymerization of sodium acrylate/carboxymethyl chitosan solutions for the adsorption of the antidepressant fluoxetine in aqueous environments. The cryogels were characterized using various analytical techniques, and the effects of pH, temperature, initial concentration, and contact time on the adsorption capacity were investigated. The surface charge of the cryogel was negative when pHsolution > pHPZC, and pH 8.5 was optimal for swelling rates and fluoxetine removal efficiency. The NaPA4-CMCs cryogel (0.5 mg.mL−1) showed the best adsorption performance, with the pseudo-first-order model best describing the experimental kinetics data. The intraparticle diffusion model revealed rapid diffusion through macropores and mesopores. The Langmuir model fitted well to the experimental adsorption equilibrium data, with qmax = 80.6 ± 3.4 mg.g−1. The adsorption process was favorable, exothermic, and governed by physisorption, involving electrostatic, hydrogen bonding, π–π, and hydrophobic interactions. The binary solvent HCl (0.1 M)/methanol 1:1 v/v was effective for regenerating the adsorbent, with adsorption efficiency greater than 60 % after three cycles of reuse. The study highlights the potential of these macroporous monoliths for the effective removal of antidepressants from aqueous environments.
Read full abstract