Microplastics (MPs) and pharmaceuticals and personal care products (PPCPs) are two types of emerging contaminants widely present in the global aquatic ecosystem. The ecological risks associated with the coexistence of these two contaminants have garnered increasing attention from researchers. In this study, we selected 15 typical hydrophilic PPCPs, including Sulfacetamide (SA), Thiamphenicol, Florfenicol, Chloramphenicol (CHL), Ampicillin, Cephalexin, Ofloxacin, Fluorouracil, Phenytoin, Theophylline, Cimetidine, Methylparaben, Diethyltoluamide, Benzophenone-2 (BP-2), and Benzophenone-4, as adsorbates. We evaluated the adsorption potential of five traditional plastics (TPs), namely Polyamide 6 (PA6), Polystyrene (PS), Polyethylene terephthalate (PET), Polyvinyl chloride (PVC), and Polyurethane (TPU), as well as three biodegradable plastics (BDPs), including Polylactic acid (PLA), Polybutylene succinate (PBS), and Poly (ε-caprolactone) (PCL), for these adsorbates. Out of the 120 combinations of MPs and PPCPs tested, only 24 exhibited significant adsorption behavior. Notably, the adsorption performance of the three BDPs was stronger than that of the three typical TPs (PS, PET, and PVC). Based on their adsorption potential, PA6, BDPs, phenytoin, and BP-2 were identified as potential sources of high ecological risk. To further explore the adsorption mechanism, we investigated the adsorption behaviors of SA, BP-2, and CHL on PA6. The conclusions were as follows: SA, BP-2, and CHL all reached adsorption equilibrium within 24 h, with the partition coefficient (Kd) following this order: BP-2 (8.051) ≫ SA (0.052) > CHL (0.018). The primary forces of adsorption were electrostatic interactions, intermolecular hydrogen bonding, and hydrophobic interaction, respectively. Additionally, weak electrostatic effects were observed in the adsorption of CHL and BP-2. The effects of pH, ionic strength, and fulvic acid on adsorption capacity varied. These results highlight a complex adsorption mechanism between MPs and hydrophilic contaminants in the aquatic environment. This study provides a basis for further evaluating the ecological risks of MPs and PPCPs combined pollution.
Read full abstract