Abstract

Antibiotics are used for the well-being of human beings and other animals. Detectable levels of antibiotics can be found in pharmaceutical, municipal, and animal effluents. Therefore, the treatment of antibiotic contaminated water is of great concern. In this study, we fabricated a sustainable aminated/TEMPO cellulose nanofiber (Am/TEMPO-CNF) aerogel to remove oxytetracycline (OTC) and chloramphenicol (CAP) from synthetic wastewater. The prepared aerogel was characterized using different analytical techniques such as elemental analysis, FTIR, TGA, SEM-EDS, and N2 adsorption-desorption isotherms. The characterization techniques confirmed the presence and interaction of quaternary amine -[NR3]+ and -COOH groups on Am/TEMPO-CNF with OTC and CAP, which validates the successful modification of Am/TEMPO-CNF. The adsorption process of the pollutants was examined as a function of solution pH, concentrations, reaction time, and temperatures. The maximum adsorption capacity was 153.13 and 150.15 mg/g for OTC and CAP, respectively. The pseudo-second order (PSO-2) was well fitted to both OTC and CAP, confirming the removal is via chemisorption. Hydrogen bonding and electrostatic attraction have been postulated as key factors in facilitating OTC and CAP adsorption according to spectroscopic studies. Energetically, the adsorption was spontaneous and endothermic for both pollutants. In conclusion, the efficient removal rate and excellent reusability of Am/TEMPO-CNF indicate the strong potential of the adsorbent for antibiotics' removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call